120 research outputs found

    Dynamics of Sclerotium rolfsii as influenced by different crop rhizosphere and microbial community

    Get PDF
    This study was carried out with the aim of evaluating pathogenicity of Sclerotium rolfsii to different crops influenced by different crop rhizosphere microbes and their population dynamics. Napier was found to be non-preferred host against S. rolfsii pathogen. Among the seven tested crops in micro-plot study, highest level of induction of sclerotial population was observed in groundnut and cow peas (21.81 and 20.06 numbers of sclerotia /100 g of soil, respectively), whereas, reduction in sclerotial number was observed in napier, maize and sorghum plots. S. rolfsii induced damping off was found to be significantly positively correlated with average sclerotial population irrespective of plant cover even at 1% level of significance (r = 0.985) and among the microbiological parameters, FDA was found to be significantly negatively correlated with damping off disease percentage at 5% level of significance (r = - 0.830). Therefore, Napier may be the potential crop to be incorporated in the sequence of rice/vegetable based cropping system in West Bengal for management of this dreaded pathogen

    A flexible approach to introductory programming : engaging and motivating students

    Get PDF
    © 2019 Copyright is held by the owner/author(s). In this paper, we consider an approach to supporting students of Computer Science as they embark upon their university studies. The transition to Computer Science can be challenging for students, and equally challenging for those teaching them. Issues that are unusual – if not unique – to teaching computing at this level include • the wide variety in students background, varying from no prior experience to extensive development practice; • the positives and negatives of dealing with self-taught hobbyists who may developed buggy mental models of the task in hand and are not aware of the problem; • the challenge of getting students to engage with material that includes extensive practical element; • the atypical profile of a computing cohort, with typically 80%+ male students. The variation in background includes the style of prior academic experience, with some students coming from traditional level 3 (i.e. A-levels), some through more vocational routes (e.g. B-Tech, though these have changed in recent years), through to those from experiential (work based) learning. Technical background varies from science, mathematical and computing experience, to no direct advanced technical or scientific experience. A further issue is students’ attainment and progression within higher education, where the success and outcomes in computer science has been identified as particularly problematic. Computer Science has one the worst records for retention (i.e. students leaving with no award, or a lower award than that originally applied for), and the second worst for attainment (i.e. achieving a good degree, that being defined as a first or a 2:1). One way to attempt to improve these outcomes is by identifying effective ways to improve student engagement. This can be through appropriate motivators – though then the balance of extrinsic versus intrinsic motivation becomes critical. In this paper, we consider how to utilize assessment – combining the formative and summative aspects - as a substitute for coarser approaches based on attendance monitoring

    A flexible approach to introductory programming : engaging and motivating students

    Get PDF
    © 2019 Copyright is held by the owner/author(s). In this paper, we consider an approach to supporting students of Computer Science as they embark upon their university studies. The transition to Computer Science can be challenging for students, and equally challenging for those teaching them. Issues that are unusual – if not unique – to teaching computing at this level include • the wide variety in students background, varying from no prior experience to extensive development practice; • the positives and negatives of dealing with self-taught hobbyists who may developed buggy mental models of the task in hand and are not aware of the problem; • the challenge of getting students to engage with material that includes extensive practical element; • the atypical profile of a computing cohort, with typically 80%+ male students. The variation in background includes the style of prior academic experience, with some students coming from traditional level 3 (i.e. A-levels), some through more vocational routes (e.g. B-Tech, though these have changed in recent years), through to those from experiential (work based) learning. Technical background varies from science, mathematical and computing experience, to no direct advanced technical or scientific experience. A further issue is students’ attainment and progression within higher education, where the success and outcomes in computer science has been identified as particularly problematic. Computer Science has one the worst records for retention (i.e. students leaving with no award, or a lower award than that originally applied for), and the second worst for attainment (i.e. achieving a good degree, that being defined as a first or a 2:1). One way to attempt to improve these outcomes is by identifying effective ways to improve student engagement. This can be through appropriate motivators – though then the balance of extrinsic versus intrinsic motivation becomes critical. In this paper, we consider how to utilize assessment – combining the formative and summative aspects - as a substitute for coarser approaches based on attendance monitoring

    Scenario of Accelerating Universe from the Phenomenological \Lambda- Models

    Full text link
    Dark matter, the major component of the matter content of the Universe, played a significant role at early stages during structure formation. But at present the Universe is dark energy dominated as well as accelerating. Here, the presence of dark energy has been established by including a time-dependent Λ\Lambda term in the Einstein's field equations. This model is compatible with the idea of an accelerating Universe so far as the value of the deceleration parameter is concerned. Possibility of a change in sign of the deceleration parameter is also discussed. The impact of considering the speed of light as variable in the field equations has also been investigated by using a well known time-dependent Λ\Lambda model.Comment: Latex, 9 pages, Major change

    Evolution of deformation and recrystallization textures in high-purity Ni and the Ni-5 at. pct W alloy

    Get PDF
    An attempt has been made to study the evolution of texture in high-purity Ni and Ni-5 at. pct W alloy prepared by the powder metallurgy route followed by heavy cold rolling (∼95 pct deformation) and recrystallization. The deformation textures of the two materials are of typical pure metal or Cu-type texture. Cube-oriented ({001} {100}) regions are present in the deformed state as long thin bands, elongated in the rolling direction (RD). These bands are characterized by a high orientation gradient inside, which is a result of the rotation of the cube-oriented cells around the RD toward the RD-rotated cube ({013} {100}). Low-temperature annealing produces a weak cube texture along with the {013} {100} component, with the latter being much stronger in high-purity Ni than in the Ni-W alloy. At higher temperatures, the cube texture is strengthened considerably in the Ni-W alloy; however, the cube volume fraction in high-purity Ni is significantly lower because of the retention of the {013} {100} component. The difference in the relative strengths of the cube, and the {013} {100} components in the two materials is evident from the beginning of recrystallization in which more {013} {100} -oriented grains than near cube grains form in high-purity Ni. The preferential nucleation of the near cube and the {013} {100} grains in these materials seems to be a result of the high orientation gradients associated with the cube bands that offer a favorable environment for early nucleation

    Measuring Cosmic Defect Correlations in Liquid Crystals

    Get PDF
    From the theory of topological defect formation proposed for the early universe, the so called Kibble mechanism, it follows that the density correlation functions of defects and anti-defects in a given system should be completely determined in terms of a single length scale ξ\xi, the relevant domain size. Thus, when lengths are expressed in units of ξ\xi, these distributions should show universal behavior, depending only on the symmetry of the order parameter, and space dimensions. We have verified this prediction by analyzing the distributions of defects/anti-defects formed in the isotropic-nematic phase transition in a thin layer of nematic liquid crystals. Our experimental results confirm this prediction and are in reasonable agreement with the results of numerical simulations.Comment: 15 pages, 4 figures, minor changes, few new references adde

    Plane-symmetric inhomogeneous magnetized viscous fluid universe with a variable Λ\Lambda

    Full text link
    The behavior of magnetic field in plane symmetric inhomogeneous cosmological models for bulk viscous distribution is investigated. The coefficient of bulk viscosity is assumed to be a power function of mass density (ξ=ξ0ρn)(\xi =\xi_{0}\rho^{n}). The values of cosmological constant for these models are found to be small and positive which are supported by the results from recent supernovae Ia observations. Some physical and geometric aspects of the models are also discussed.Comment: 18 pages, LaTex, no figur

    Sulfonated Styrene-(ethylene-co-butylene)-styrene/Montmorillonite Clay Nanocomposites: Synthesis, Morphology, and Properties

    Get PDF
    Sulfonated styrene-(ethylene-butylene)-styrene triblock copolymer (SSEBS) was synthesized by reaction of acetyl sulfate with SEBS. SSESB-clay nanocomposites were then prepared from hydrophilic Na-montmorillonite (MT) and organically (quaternary amine) modified hydrophobic nanoclay (OMT) at very low loading. SEBS did not show improvement in properties with MT-based nanocomposites. On sulfonation (3 and 6 weight%) of SEBS, hydrophilic MT clay-based nanocomposites exhibited better mechanical, dynamic mechanical, and thermal properties, and also controlled water–methanol mixture uptake and permeation and AC resistance. Microstructure determined by X-ray diffraction, atomic force microscopy, and transmission electron microscopy due to better dispersion of MT nanoclay particles and interaction of MT with SSEBS matrix was responsible for this effect. The resulting nanocomposites have potential as proton transfer membranes for Fuel Cell applications

    Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics

    Get PDF
    CdSe quantum dots functionalized with oligo-(phenylene vinylene) (OPV) ligands (CdSe-OPV nanostructures) represent a new class of composite nanomaterials with significantly modified photophysics relative to bulk blends or isolated components. Single-molecule spectroscopy on these species have revealed novel photophysics such as enhanced energy transfer, spectral stability, and strongly modified excited state lifetimes and blinking statistics. Here, we review the role of ligands in quantum dot applications and summarize some of our recent efforts probing energy and charge transfer in hybrid CdSe-OPV composite nanostructures
    corecore